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Abstract—A synthetic description of continuous structural models followed by some general ideas on hybrid
discrete models is first presented. An approximation theorem is then established which leads to a general
expression of an upper bound of the discretization error, equally dependent on the strain and displacement
interpolation errors, as well as on the exact and approximate solutions. The last part of the paper is devoted to
the justification of the patch test with the help of such expression. It becomes clear that passing the patch test
is not a necessary condition for convergence and that the simple patch test is sufficient for accuracy and not
merely for convergence analysis.

1. INTRODUCTION
Several authors have been writing on convergence and accuracy in the finite element method for
the last ten years, and the author himself wrote a number of paper concerning structural and
non-structural cases and the role of convergence in the mathematical theory of structures.

The problem of convergence is not really a difficult one if the elements are such that
conformity is achieved because, then, completeness implies convergence. The completeness
criterion being not sufficient, however, in the non-conforming case, finding supplementary criteria
for such general situation has not proved to be an easy matter.

Some authors, like recently Myoshi[1], Nitsche[2] and Kikushi[3], do not seem to have been
especially interested in general criteria. Establishing general expressions for the discretization
error and applying it to particular elements was indeed their main concern.

General criteria are useful however, not because they suppress the particularization to a given
kind of element, which has always to be done as the final step of any convergence analysis, but
because they make it simpler.

The patch test was one of the most significant advances in convergence analysis just because
it provided a general criterion for the non-conforming case. Passing the patch test together with
completeness is indeed sufficient for convergence.

The test was devised by Irons (4] as an empirical tool and first studied by Strang[5] from a
mathematical point of view. Other mathematitians like Ciarlet[6] have used it in their work on
convergence.

The author’s own ideas on convergence and accuracy are expounded in the present paper and
the patch test justified with the help of such ideas.

The first part of the paper is devoted to a synthetic description of continuous structural
models, followed by some general ideas on hybrid discrete models generated by the potential
energy method. The corresponding class of elements, which comprehends Pian’s hybrid
elements[7] as a particular case, represents the most general case of kinematically
non-conforming elements; those within which displacements and strains are not connected by the
continuous homogeneous strain-displacement equations. A dual class of models characterized by
statical non-conformity can of course be generated by the complementary energy method but is
not considered in the present paper.

An approximation theorem is then stated which leads to a general expression of the error or,
more precisely, of an upper bound of the error (see inequality (5.16)), which is quite different
from the ones given by the authors quoted above.

An important point about about such expression is its symmetry: the error becomes indeed
equally dependent on the strain and on the displacement interpolation errors, on the exact and on
the approximate solutions. It becomes clear moreover that the order of magnitude of the error
depends on the boundedness of certain derivatives of both solutions, so that conclusions can
immediately be drawn for a particular element if such conditions can be checked.
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This boundedness criterion is not new. It has indeed been indicated by the author since 1968{8]
and no simpler one seems to have been presented. Unfortunately, in most cases, the boundedness
conditions are really not easy to check and the patch test has to be used.

The last part of the paper is thus devoted to justify the patch test by proving that the
boundedness conditions mentioned above are certainly satisfied by the approximate solution if
they are also satisfied by the exact solution and if the patch test is passed. In other words,
completeness and passing the patch test are proved to be sufficient conditions for convergence.

The whole discussion is valid for the general hybrid case which was not considered by any of
the authors quoted above, except Kikushil[3]. It was however examined quite early by Pin-
Tong[9] and more recently by Oden[10]. The author himself has been studying convergence of
hybrid elements since 1970{11]. No general expression for the error was however given in his
earlier papers, basically concerned with convergence and not with accuracy. Estimates of the
order of approximation were indicated later [12] but the present paper is the first by the author to
contain an explicit error expression.

In what concerns the patch test, its justification in the present paper makes it clear that: (i)
passing the patch test is not a necessary condition for convergence; (ii) the simple patch test is
sufficient for accuracy analysis.

This is in contradiction with what Strang and Fix[5] wrote in their book where (page 301) the
simple patch test is expressly associated to simple convergence and the higher-order patch test
seems to be declared necessary for accuracy analyses.

2. CONTINUOUS MODELS

Let us consider an elastic structure occupying a domain {} with boundary 8, subdivided into
subdomains I* with boundaries B°. The external boundary 8 is assumed to consist of two parts,
B: and B,. Tractions are supposed to be prescribed on 8, and displacements on 8.. The set of all
the points belonging to the boundaries 8¢, but not to the external boundary B, is termed the
internal boundary y of (.

Stress, strain and displacement fields are associated to the structure, strains and
displacements being supposed so small that geometrical linearity can be admitted.

Stresses and strains are assumed connected by homogeneous (vanishing stresses correspond
to vanishing strains) stress-strain equations

s = He, @2.n

strains and displacements by inhomogeneous {initial strains e°, associated with self-equilibrating
initial stresses s°, correspond to rigid body displacements) linear strain-displacement equations

e=Du+e’ (22)
and stresses are assumed to satisfy the equilibrium equations
Es=f in {°, Ns=p on 8° (2.3-4)

where £ and p respectively represent the body force density vector and the traction vector.

H is a positive-definite symmetric matrix. D and E are matrices of differential operators. N
depends on the normal vector at each point on 8° and changes sign with the external normal
vector, n.

The strain and displacement fields are assumed continuous within each {° (piece-wise
continuous on ). The displacements are, in addition, assumed to admit within each Q°, the
derivatives involved in the strain-displacement equations. The stresses, and therefore the sirains,
are assumed to admit, also within each 1°, the derivatives involved in the equilibrium equations,
We call € and % the spaces of all the strains and displacements on ) satisfying the conditions
above.

Matrices D, E and N are supposed such that, for any vectors s and e satisfying such conditions,
but not necessarily interconnected through (2.1) and (2.2), the identity
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fn‘ s” (Du) dQ° = L‘ (Es)" ud(}* + L. (Ns)"udB* 2.5

holds.
An immediate consequence of (2.5) is the work theorem for subdomain ()°,

L‘ s (e—e)dQ* = L‘ " udQ* + fp. pTudp”. (2.6)

Each stress field, and thus each strain field, being equilibrated by a system of external forces
distributed on the subdomains Q°, on 8 and on y with densities respectively £, p and g, the work
principle can take the global form

an. sT(e—€)d0 =3 fn‘ " udQ +L p udp *L g udy Q.7

where s, e and u are supposed to satisfy the conditions above and u is assumed moreover to be
continuous on the whole domain Q.

The initial stresses being self-equilibrating, in the sense that they are equilibrated on Q by
vanishing external forces, we can write, by virtue of (2.7),

> f . " (Du)dQ° =0 2.8)

for any u € % continuous on ().

Equation (2.2) permits to generate, from a given displacement field ¥ € % and a given initial
strain field €° € €, a unique strain field ¢ € &. A linear operator A may be introduced thus, with
domain % and range &, such that eqn (2.2) is equivalent to

e=Au+e’ 2.9)

We call an isocompatible subset @ of % the set of all the displacement fields which take
given values q on B, and present given discontinuities h on y. We call an isocompatible subset of &
the set €. of all the strain fields generated by each of the elements of an isocompatible subset
Q¢ of U and a given initial strain field e°. Each element of such isocompatible subset is said to be
compatibilized by a system of isocompatibilities characterized by an initial strain vector e° on the
subdomains ()°, displacement values q on B8, and displacement discontinuities h on y. We call
Ao the subset of A with domain 4/, and range &e.o.

A unique displacement field # € % (and also a unique initial strain field ¢® € &) is associated
to a given strain field e if, as we assume, conditions are given on B, and y for supporting the
structure and interconnecting its different parts in such a way that no rigid body displacements of
such parts are allowed. This means that operator A¢.c has an inverse, ®¢.o, such that

u=Pgoe if e € &0 2.10)

Introducing (2.10) in (2.9) we conclude that operators ®¢.o and A are such that, for any
eE 8«,,0,
e = Adg ce +e° 2.11)

Let # be the space of all the systems of external forces which equilibrate the elements of .
Each system, characterized by densities f, p and g, is equilibrated by reactions distributed on 8,.
Two systems are admitted to coincide if such reactions are statically equivalent.

Let I be an operator with domain & and range # which associates to each strain field e € & the
element f € ¥ which equilibrates such field. The equation

Ne=f 2.12)
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represents the equilibrium equations. Operator I1 has no inverse, unless the structure is statically
determinate. The subset of all the elements in € which correspond to a given element of F is called
an isoequilibrated subset of €.

We call .o the subset of II which associates to each element of an isocompatible subset
&40 C & the corresponding element of . The intersection between each isocompatible and each
isoequilibrated subset of & being assumed unique (uniqueness principle), operator [1¢ .o admits an
inverse,

Peoo= g 213

A norm may be associated to each element of spaces &, % and &, which become thus Banach
spaces. We choose

lebe = V(3 [ e eder) 2.14)

Netlla: = \/ (2 L« u'u dﬂ‘) .15

and finally
Ifls = \X(g L‘ f'1dQ° +L; p'pdB +J’T g'g dy), (2.16)

The definition of these norms gives a meaning to the boundedness of operators A, ¢ ., [ and
P 4.2, which will be admitted from now on.

Figure 1 may help in keeping in mind all the spaces and operators which have been introduced
up to now and also those which will be introduced in the sequel.

3. HYBRID DISCRETE MODELS

Let the structure be discretized into finite elements corresponding to the subdomains 0°. A
discrete mode! is thus generated which is analogous to the generating continuous one.

The discrete domain is the set of the subdomains (3°. The continuous fields are replaced by
sets of generalized stress, strain and displacement vectors, s, e and u, associated to the different
subdomains. Discrete stress-strain, strain-displacement and equilibrium equations,

s°=He* 3.0
e=Dv +e* 3.2
E's" = 3.3)
f w A
&
p
Arw Doy
T
A¢ w0 Py
£ A
k.
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are associated to each {)°. Equation (2.5) becomes
sTDu* =(E"s") v’ (34
and, as it must be valid for any vectors s* and u® not necessarily interconnected through eqns
(3.1)-(3.3) it is equivalent to
D =E". (3.5)

Equations (2.6) and (2.7) respectively become

s —e”) =" (3.6)
and

> 7 (e —e")=F"U 3.7

where F and U denote the global force and displacement vectors.
The discrete self-equilibrium condition for s* is now

2 sﬂ'TDeue =) (3.8)
where

u® =AU, (39

Equation (3.9) is the expression of the discrete continuity conditions for displacements. A® is the
connectivity matrix associated with subdomain Q°.

Usually, the elements of u* are generalized displacements at certain given points on 8¢ called
nodal points or nodes, and the discrete continuity conditions (3.9) require the continuity of the
displacements at such points.

Assuming the discrete model to be generatefl by the potential energy method {11}, continuous
and discrete strains and displacements are respectively interconnected by equations

£ 2

e=x%¢ and u=e°v 3.10-11)
which define the continuous fields allowed within (°,

We denote by €’ and %' the subspaces of & and % containing all the strain and displacement
fields which respectively satisfy (3.10) and (3.11). Isocompatible subsets with respect to discrete
compatibility conditions caa of course be defined on €’ and 4, in the same way as on € and % with
respect to the continuous ones. Operators A’ and ®% o can be introduced on the other hand as weill

as equation
e'=Au'+¢", (3.12)
Three principles are admitted which make it possible to express the discrete magnitudes in

terms of the continuous ones.
The first of these is the principle of the invariance of internal work, which implies

e He' =J’ ¢,” He, d)* (3.13)
n‘
for any pair of strain fields e, and e, belonging to &’. Introducing (3.10), we obtain

H = L; xcrnxc da-. (3.14)
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From (3.13) we can obtain also
e = H"'f x* He dQ* (3.15)
ar

i.e. the expression (valid only if e € &) of the discrete strain vector in terms of the continuous
one.

Expression (3.15) may be used for expressing the discrete initial strains in terms of the
continuous ones, if these last are assumed to be allowed within the element (¢ € &’), as we
admit them to be. We write therefore

e =H"| x"HedO" (3.16)

o
The assumption of ¢° belonging to &' should not surprise. It is well-known indeed that the
remaining incompatibilities, i.e. the displacements prescribed on 8, and the displacement
discontinuities prescribed on v, cannot be arbitrary also, as they must comply with the
displacement fields allowed within the elements.
The second principle requires the discrete compatibility conditions to be a subset of the
continuous ones. This implies that
e=Au+e® f(29 holds, ¢e€® and wuecq, 317

or that (3.2) is satisfied if (2.2) is also satisfied. Introducing (2.2) and then (3.11) in (3.15), we obtain
e=H" L . X H(De¢®) dQu* + L x° He dQ° (3.18)
and then, comparing with (3.2) and considering that the second term in the right-hand side is ™,
o' =1 x"HDe") (3.19)
or, by virtue of eqn (2.5), the more usual{7] expression
DE=H" [ fm (EHY* Yo" dQ° + L ((NHY*)"¢* dﬁ‘]. (3.20)

It is now easy to prove that the discrete initial stresses s> corresponding to the initial strains
defined by (3.16) are self-equilibrating in the discrete sense. It suffices to show indeed that (3.8)
holds if (2.8) also holds, and this can be done by introducing (3.10) and (3.11) in (2.8). We obtain

S ] X THD¢*) dur =0 (3.21)
3 fi

and, therefore, by virtue of (3.19), eqn (3.8).
The third principle is the principle of the invariance of external work which, applied to each

element, implies
" u =f f"udQ* +I pTudp (3.22)
ae a

for any u € ', and thus, introducing (3.11),
£ = f e 71O + f o "pdB". 3.23)
o "
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Applied to the whole structure, the third principle gives

F:E Ae’([ ¢¢deﬂg+f
e n* B

T ! T
TR Y I T B e
[a¥ N Bty

where factor 1/2 multiplying the last term results from assuming that the external forces
distributed on the internal boundary are equally shared by each of the two elements contacting at
each point of y.

Two interpolation operators (bounded and linear) are introduced which respectively associate
to each element of ¥ or & an element of %' or &'.

Let I, be the interpolation operator for displacements, with domain % and range %', such that
the Iy-image of an element 4 € % is the element #’ € %’ whose components take values equal to
those of u at the nodes. We write

u = Iyn 3.25)
and point out that
u=hu if ued'. (3.26)

The interpolation operator for strains, , with domain % and range &', is defined by

Le=Nh®eoete® i eCEp 3.27)
which implies
& = Lye® (3.28)

because P 0e° =0
Introducing (2.10) and (3.28) in (3.27), we conclude that

Le~e=ALu if e—e*=Au (3.29)
It may be proved also that
e=ke f e€c¥ and Pereec . {3.30)
Indeed, by virtue of (3.26),
Le=Au+e’ (3.31)

and, thus, comparison with (3.12) immediately yields (3.30).

As each isocompatible subset of ' corresponds to given displacement values at the nodes
located on 8, and to given displacement discontinuities at nodes located on ¥, the Iy-images of
fields isocompatible in % are isocompatible in %', Similarly, the I,-images of isocompatible fields
in € are also incompatible in &’.

The isocompatible subset %% of 4’ which contains the In-images of the elements of a given
isocompatible subset U of ¥ is said to correspond to Y. A similar definition may be given fora
isocompatible subset of & corresponding to a given isocompatible subset of &.

To each set of vectors * (one for element) a system f’ of discrete external forces correspond.
We call #' the space of all such systems, i.e. the discrete counterpart of % Each elementof ' is
characterized by a vector F, of discrete external forces acting at the nodes not located on B,. Such
vector is connected to the vector fields f, p and g, which characterize the continuous external force
system to which it corresponds, by the equation

F=SA([ et + [ o pap e[ oeapy 63
) o ptng Bty
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which results from (3.24). A,° is the connectivity matrix associated with {)° and the nodes not
located on B..
The norm in %' is defined by

If'lle = VFTFy). (3.33)

We introduce IT', II¢ .~ and P .o as the discrete counterparts of II, Il.o and P.o.
Operator I', with domain % and range %’ is such that equation

F=rIf (3.34)

represents (3.32).
All these operators are supposed bounded.
The set of elements ¢’ € €' which satisfy the equation

e =f (3.35)

foragiven f' € # is anisoequilibrated subset of &€’. The intersection between each isccompatible
and each isoequilibrated subset of €’ is assumed unique.

An isoequilibrated subset &' of &’ is said to correspond to an isoequilibrated subset & of €
associated to an element f of F if 9’ is associated to T'f.

We finally introduce the bounded but generally non-linear approximation operators Ag and A4
with domains respectively € and % and ranges €' and %',

Operator Ay associates to the intersection e € € of given isocompatible and isoequilibrated
subsets of € the intersection e, € €' of the corresponding subsets of #'. We write

ehL= Age (3.36)
and call e, the approximation of ¢ in €’. This definition makes it clear that ¢/, and €’ (the Iz-image of

e) are isocompatible in &'.
It is clear also that

€= Age”. (3.37)

This results from (3.28) and from ¢° being selfequilibrating both in the discrete and in the
continuous sense, and thus simultaneously belonging to an isoequilibrated subset of &€ and to the
corresponding isoequilibrated subset of &'.

Operator A associates to the @ -image of an element ¢ € .o the ®¢o-image of its
approximation in €'. We write

o= Al (3.38)
or

u,= P oAcAu (339

if u € Ue and Ul corresponds to U,
Introducing (2.9) and considering that ®%..e, is the inverse of A%,.», we obtain

Agle — €% = A'(Aqu). (3.40)
In the non-hybrid case, operator A’ is a subset of A and we can write
Aale — €% — (e — €%) = AMAqlt — u), (3.41)

equation which may be used for connecting the orders of magnitude of the strain and
displacement approximation efrors,
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4. THE APPROXIMATION THEOREM

An inequality will be established now with the help of which upper bounds for the strain
approximation error can be determined.

The derivation of such inequality is based on the well-known total potential energy (t.p.e.)
theorem.

In the continuous model, the t.p.e. associated with f& & is the functional on & X ¥

Ti(e,u) =3, Ue)—(f,u) @1

where U*(e) is the strain energy associated with the subdomain (}° and the strain field ¢, and

(f,u)=2[ tTudﬂ‘+f p"udﬁ+[ ¢ udy @2)
e Ja* -1 k4
In the discrete model, the t.p.e. takes the form
T(e', u'Y=, Ue")~(f,u') 4.3)
where

(fuy= 2 F\™%,. (4.4)

By virtue of the invariance of work (see Section 3),
Toe,u)=Toe,u) if e€¥, ued, f=Tf @.5)

The t.p.e. theorem for the continuous model states that the continuous (or exact) solution, i.e.
(e, u,) € & x U, where e, is the solution of the equation

nQ.e"e = f (4.6)
and
U, = Q“;oess (4'7)

minimizes T(e, u) on &0 X U
The t.p.e. theorem for the discrete model states that the discrete (or approximate) solution,
i.e. (€, U') EE XU, where e, is the solution of the equation

He.re' =f (4.8)

and
u ;a = Qa',cq e;a 3 (4'9)

minimizes Ty(e’, u') on &% o X UL,
Both theorems suppose stability.
The main problem which we wish to discuss in the present paper is the approximation of e, by

€.
An essential point in any approximation analysis being the definition of the distance
between two fields in &, we define such distance as the square root of the strain energy of their

difference, i.c.

deeved= /(3 Uter-en). (4.10)
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It is well-known that, if this definition is adopted, the distance between the strain field
associated to the exact solution e, € ¢ .0 and any field e. isocompatible with e,, i.e. also belonging
to &g.o, satisfies

d(e,, e.) = \V/(Ty(u., e.) — T(u,, e.)). 4.1

Definition (4.10) and eqn (4.11) are in principle valid only for the linear case. In the non-linear
case, both can still be used only for points very near each other. The approximation theorem
which is going to be established can thus be applied also in the non-linear case for evaluating the
order of the magnitude of the distance between the exact and approximate solutions, provided such
distance really tends to zero.

Consider now fields e,, and u,,, respectively belonging to .. and %%, and such that

e;a = Iiesaa u{\’a = Iﬁtusm (4.12"‘13)
and let
e.= Iye,, u.=lyu,. (4.14-15)
Field u. belongs to %% and e’ belongs to €4 .o.
Let f'=Tf and
8,T=Tj(es, u)— T (e, u,) (4.16)
5,,T= T}'(e;n, u;a) - Tf(esu’ usa) (417)

By virtue of the invariance of external work,

8T = Tr(Ize, Inu) — Tle, u) = Z U —(f, bu) (4.18)
where
Se=¢'~e OSu=u'-u (4.19-20)
and
U =U*(e')-Us(e). 4.21)

Before considering the approximation theorem, we can show that
8T = 0(||dells) + O ufla)- 4.22)

Indeed, if s is the stress field corresponding to e,
DEIED) L_ Toed(r </ (2 L» 503 fn‘ se7sed0) = Isholoel. (423
On the other hand,
(f, 8u) = |l »fi 0, (4.29)
so that we may write

8T = |[slls|delle + Al lloullas 4.25)

where
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sty = \/ (2 f s"s cm‘). (4.26)
e JO*

On the other hand,

d(e.¢) =/ (= veee)- VG 3 [ ss7e dar) = ogoel) @27
so that

d(€.a, €2a) = 0(]8a¢]e). 4.28)

The approximation theorem[12] simply states that:
“If the distance between two fields in € is defined by (4.10), then, the distance d(e,, €..)
between the exact and the approximate solutions satisfies the inequality

d(e., €..) V(8. T|+(8.T)) + 0(|8.ell«)". 4.29)

The proof is straightforward and is schematized in Fig. 2.

S. ERROR BOUNDS

Let 8u and Se be defined by (4.19) and (4.20) and let ¢° and ¢ respectively denote the
diameter of Q° and the maximum value of #° on the whole set of subdomains.

The following theorems establish bounds for [|Sully and ||Sels.

Theorem 5.1: “If (a) the displacement field u € ¥ is such that the (n + 1)th derivatives of its
components are all bounded within each subdomain ()¢, their moduli being, at each point, lower that
a positive number U,..; (b) each polynomial displacement field of the nth degree (or less) is
allowed within Q°; then

i5ulle = % V(1) 6.1

[(rwa<rw ] [ a%eem)=Twa-Tw) | | dlow o) =Ofisiel)]

[ T(Uw) - T(W)=8,T-8T I

| T - Two<iaTi+iar |

| st o) =VETTFRT |

triangular inequality ~

[ dee.en)caton on)+ vETTET |

[ dte. 0u) = VIBETTTTaT]_+Osiel)]

Fig.2.
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Inorder to prove this theorem, it suffices to remark that component % can be expressed within {}°
by

= (0 + G 7 WK1 (005 = Xk =) (3 = x) 6.2

where u.(x) represents a polynominal of the nth degree and O and O; are points within (°
We can write therefore

= Hy + Fysy {3.3)

where u, represents the field with components u, and

(rusille = T rf)r /A (5.4)

As, by virtue of assumption (b),

u, €U (5.5)
we can write, by virtue of (3.26),
Lutt — = L{u—u,) (5.6)
and, therefore,
Mot = ttalloe = Hullflte = vt (3.7
Thaus, by virtue of (5.3) and (5.4),
Mt = il = il ;‘*{), Q. (5.8)
As, on the other hand,
Mot — ulle € Jlutt — ol + it — tlfac, 5.9

inequality (5.1) is proved.

Theorem 5.2; “If {a) the strain field ¢ € € is such that the (m + I)th derivatives of its
components are all bounded within each subdomain }°, their moduli being, at each point, lower
than a positive number E.,..; (b) all polynomial displacement fields of the (m + d)th degree ( or
less) are allowed within )¢, d being the order of the derivatives involved in the strain-
displacement equations; {¢) any strain field is also allowed which can be generated by such
displacement fields with the help of eqn (2.9); then,

iiseg*f(}im%)iim RV (O (5.10)

Indeed, making n = m + d, eqn (5.3) yields
e=Au+e"=Atimeg+ €%+ Alpiasr $.an
As, by virtne of (b) and (¢), Un.s belongs to %' and

Cw = Allse +€° (5.12)
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belongs to &', there results that, by virtue of (3.30),

en = Igen. 5.13)
We can write therefore
Iiee = enlls < Tslllle - emlls. (5.14)
Now, by analogy with (5.4),
le = enle = IAmeserle < 22tk om*1/0) (5.15)
(m + 1!

so that the use of the triangular inequality leads to (5.10).
Introducing (5.1) and (5.10) in (4.25), and then in (4.29), there results

d(es’ elsa) = J({L*'_HL'JL [(lls"S‘Em-l-l)s + ("s".‘IEm-l—l)a £m+1

{m+1)!
Iﬁu%,lﬁﬂ%g[(mn), +(U,.+1),]£”“}) (5.16)

where indices s and a refer to the isocompatible fields e, and e,..

An interesting point about eqn (5.16) is that n is not necessarily equal to m + d. The way in
which the displacements are discretized, intervenes indeed in two distinct discretization steps:
the determination of matrix D* and the determination of the discrete external force vector f*.
Different matrices ¢° may then be used for each, i.e. we can make

D =H" fm x* HDg:*) dO* 6.17)

and

= fn 010" + f " pdp.. (5.18)
. .

Now, while the displacement discretization connected with ¢,* must be such that n = m +4,
the value of n connected with ¢,* does not depend on the value of m.
We can write therefore

@2 (e, €)= O(€™)+ O£ (5.19)

and assume that n refers to ¢,°, i.e. to the displacement discretization matrix which is used
for the determination of the discrete external forces.

In order that the approximation in strains be consistent with the approximation in displace-
ments, m must be equal to n. If n is indeed larger than m (equal to m + d, for instance, as often
people think it must be), the approximation in displacements is unnecessarily high. If m is larger
than n, the waste is associated with the strains,

This conclusion must be present when the discrete forces are evaluated. The use of simple
devices for the determination of such forces, like the one consisting in assigning to each node an
equal share of the total forces acting in the element, which can be shown to be consistent with the
use of constant allowed strains, can namely be justified with its help.

The following theorem results from the approximation theorem and from Theorems 5.1 and
5.2,

Theorem 5.3: “H (a) the moduli of the derivatives of order respectively n +1 and m + 1 of the
displacements and strains associated with the exact solution are lower than positive numbers
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(U.+1)s and (E,,..,), within each subdomain {}°; (b) fields u,, and e,, exist, isocompatible with
fields u. and e,, such that eqns (4.12) and (4.13) hold and the moduli of the derivatives of order
n+1and m+1 of their respective components are lower than positive numbers (U,..). and
(Ewm 1)« within each subdomain Q°; (c) all polynomial displacement fields of the (m + d)th degree
(or less) and all strain fields which can be generated by such displacement fields are allowed
within each element, for the purpose of the determination of matrices H® and D°; (d) all
polynomial displacement fields of the nth degree (or less) are allowed within each element, for
the purpose of the determination of the discrete external forces; then, the distance between the
exact and the approximate solutions satisfies inequality (5.16).”

Conditions (¢) and (d) are called completeness conditions.
In case of conformity (Ritz’s case), n = m + d, and conditions (a), (¢} and {d) are sufficient for
the distance satisfying the inequality

dten i) <y (L it em) (5.20)

{m+ 1)

and thus being of the order of ¢*"2 In the general non-conforming case, however, the
condition of the boundedness of the derivatives associated with u,., and e., (see condition (b)),
which we call the supplementary condition, must not be forgotten. The patch test is associated to
the satisfaction of such condition.

Convergence being achieved whenever d(e,, e:. ) is of the order of /¢, inequality (5.16) shows
that convergence can be possible even if the (n +1)th and (m + 1)th derivatives of the
displacements or strains are not bounded. All it is needed for convergence, indeed, is the
boundedness of ¢™E,,., and ¢€"U, ... This indicates that convergence may still be possible even in
cases in which the patch test is not passed.

QOur aim being a limit analysis of the error, conditions (c) and {d) may be satisfied only in the
limit, i.e. the requirement of the allowed fields being polynomial with arbitrary coefficients can be
replaced by the one of the arbitrariness of the corresponding coefficients in the Taylor’s
expansions of such fields around some point within °. Similarly, in what concerns condition (c),
the strain fields have not to be generated by the displacement fields: it suffices that the
strains generated by the allowed displacements tend to be allowed as ¢ becomes smaller and
smaller.

Allowed strain fields are used very often which equilibrate vanishing body forces. Only
boundary values of the allowed displacements are then required for the determination of D* with
the help of eqn (3.20), so that the allowed displacement fields within ) need not to be made
explicit[7]. This can make more difficult, but of course not impossible, checking condition (c).

6. THE DISPLACEMENT AND STRAIN DERIVATIVE
BOUNDEDNESS CRITERION

Our aim now is making the supplementary condition comparatively easy to check.

Admitting that the fields u,, and e,, are such that the derivatives of their components are of the
same order as those associated with ', and €/, (and this certainly happens if they are constructed
like in Section 7), the supplementary condition is satisfied whenever the derivatives of order n + 1
and m + 1 of the displacements and strains associated with the approximate solution, are bounded.
In other words, eqn (5.16) remains true if condition (b) of Theorem 5.3 is replaced by the following
one:

“(b') the modauli of the derivatives of order respectively n + 1 and m + | of the displacements
and strains associated with the approximate solution are bounded within each subdomain 2°”.

This remark can be and has been applied by the author[11] in certain cases, namely when; (a)
the fact that certain derivatives always vanish, or (b} the boundedness of the strain energy
density, or (c) the boundedness of the body force density, or (d) the fact that the nodes are all of
the same kind, imply the boundedness of certain derivatives of the displacements and strains.

A typical case is Morley’s plate element{13] characterized by a quadratic transverse displace-

ment field. As the element is non-hybrid and Kirchhoff’s assumption is admitted, the strains
(curvatures) become second derivatives of the transverse displacement. They are constant
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therefore within each element, and conditions (c) and (d) of Theorem 5.3 are respectively satisfied
with m =0 and n = 2. The supplementary condition (b’) is certainly satisfied with m =0 and
n =0, because the first derivatives of the allowed strains vanish and the first derivatives of the
displacements are the rotations. Convergence is thus achieved regardless of the type of mesh.

In what concerns the BCIZ (Bazeley, Cheung, Irons and Zienkiewicz) triangular plate
element, [4], the boundedness of the third derivatives of the transverse displacement can be
concluded if the mesh is such that the nodes are all of the same kind {see[11]).

Another typical situation is the rectangular ACM (Adini, Clough, Melosh) element[14], the
generalized displacements of which are the transverse displacement and the rotations at the
corners. The allowed transverse displacements are of the form

W = Py(x1, X2) + aux X2+ Graxaxs’ 6.1}

if axes are taken parallel to the axes (P; denotes a complete polynomial of the third degree with
arbitrary coefficients). As the nodes, which may be assumed equidistant for sake of simplicity,
are all of the same kind, and the generalized displacements are the nodal values of w and its first
derivatives, the assumption of a smooth variation of such generalized displacements from node
to node along the coordinate lines containing the nodes may lead fo the conclusion that the
derivatives wiq, (Wa)ss, (Widsz, Wan, (Wadini, (Wi associated with the approximate solution are
bounded along the edges of the rectangles. The boundedness of the third derivatives of w (and,
for physical reasons, of the second and first derivatives) associated with the approximate solution
may be ensured then at any point within {}* and, the satisfaction of the supplementary condition
thus being concluded, convergence is certain.

The boundedness of the (1 + 1)th derivatives is however not always easy to predict, moreoverif
n > O, and this explains why the patch test can be so useful.

7. THE FORCE BOUNDEDNESS CRITERION

A second criterion for the fulfiliement of the supplementary condition is presented in this
Section. The justification of the patch test will be based on such criterion.

Let €, denote a subset of € containing fields equilibrated by bounded systems of external
forces, i.e. such that, if ¢ € &,, the norm |lle]s is bounded. Let €. € ' denote the set of the
Ie-<images of the elements of €.

Theorem 7.1: “The norms of the systems of discrete forces which equilibrate the A¢-images of
the elements of &, are bounded.”
Indeed, making

f=1e an
f =1I'Age 72

eqn (3.34) holds, so that, as I" has been admitted to be bounded and | £} is bounded, |} f' |5~ is also
bounded.

A similar statement cannot be given for the I,-images of the elements of €.. In other words, the
fact that a strain field e belongs to &, does not ensure the boundedness of the norm I Iee|ls-.

The following theorem can be stated which is the foundation of the force boundedness
criterion.

Theorem 7.2: “If the norms of the systems of discrete forces which equilibrate the I, -images of
the elements of a certain subset &, C & are bounded, and field e, belongs to €,, then the satisfaction
of condition (a) of Theorem 5.3 implies the satisfaction of condition (b) (supplementary condition)
of the same theorem”,

Let us start the demonstration by constructing fields u,, and e,

Let %, denote the isocompatible subset of % corresponding to vanishing prescribed
displacements on 8, and vanishing displacement discontinuities on ¥, and let N denote the

number of degrees of freedom of the discretized structure (N is thus also the number of elements
of vector F,).

1SS Vol. 13, No. 3B
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Consider N displacement fields #, such that: () u, € Us, and Au. €€, (i) all the
derivatives of the components of the fields u, are bounded on {}; (iii) the N fields

ul = Iy(u,) (1.3)

are linearly independent.

Each value of a corresponds to a certain degree of freedom and, therefore, to a certain node
and a certain co-ordinate direction i

Fields u, may be for instance the continuous displacement fields actually introduced in the
body by vanishing prescribed displacements on 8,, vanishing displacement discontinuities on v,
vanishing prescribed tractions on 8,, and body forces with density

foy = €58, 74
on {}, where x represents a coordinate vector and » and i denote the node and co-ordinate

direction corresponding to a.
Let us call ¢, the strain field

€. = A, (1.5

As u, belongs to U, e, clearly belongs to &g,0.
Fields u. and

e.= Iye, (7.6)

belong on the other hand to the N-dimensional subspaces ¥e, C U’ and &40 C &', Le. to the
isocompatible subsets of %' and €’ corresponding to U, and &, .

Now, as the values of the displacements at the nodes located on B, and of the nodal
displacement discontinuities at the nodes located on vy are the same for the exact solution and for
the approximate solution, the difference u.,— I,u, certainly belongs to @U%,. Similarly, for these
reasons and also because (3.28) holds, the difference e,, — Ie, belongs to &0

As, on the other hand, the N linearly independent fields u € %, form a basis for the
N-dimensional space U, a set of coefficients v. can be determined such that

o = udly = 3 Yol a.n
Applying operator A’ and using (3.29) and (7.5), we obtain also
€= Ist, = 2 vael (1.8)
Considering the linearity of operators I, and I, eqns (7.7) and (7.8) can be transformed into
oo = IS vute + ) 19)
€= Is(}} Yala + es) (7.10)
which, compared with (4.12) and (4.13), show that u.. and e,. can be expressed by

Usa = D) (Yalla + Us) (1.1)

and
e = 2, (Yol + &) (1.12)
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Equations (7.11) and (7.12) make it clear that, if the coefficients y. are bounded, the
derivatives associated with u,, and e,, satisfy the same boundedness conditions as those
associated with u, and e, The boundedness of the coefficients y. implies therefore the
satisfaction of the supplementary condition, once condition (a) of Theorem 5.3 is also satisfied.

In order to demonstrate Theorem 7.2, it remains thus to prove that, if the norms of the
systems of discrete forces which equilibrate the I,-images of fields ¢, and e, are bounded, then the
coefficients v, are also bounded.

Applying indeed operator II' to both sides of (7.10), we obtain, if the linearity of IT' is
admitted,

el = v.[VEee, + e, (7.13)
and, therefore,

IE 7.H’Ice..ﬂ , Z ey + [T e |- (1.14)

As|[IT" 'l is bounded by virtue of Theorem 7.1 and [lI' Ise,||s- is assumed to be bounded, the
left-hand side of (7.14) is bounded. Then, as the sets of discrete forces I1'Ise, are linearly
independent and their norms are also assumed to be bounded, the coefficients y, must be bounded
and Theorem 7.2 is proved.

8. THE PATCH TEST

The application of the force boundedness criterion depends thus on predicting the bounded-
ness of the norms of the systems of discrete forces which equilibrate, when the dimensions of the
subdomains tend to zero, the Iy-images of the elements of a subset &, C & to which fields e, and e,
are supposed to belong.

The patch test is nothing else than a practical way for recognizing such boundedness for a
subset &, containing bounded strain fields with bounded first order derivatives.

This conclusion results from four theorems which will be established first for three-
dimensional elasticity and later adapted to plates.

Let us consider a three-dimensional patch with diameter ¢. £ is also the order of magnitude of
the dimensions of any element in the patch. Displacements are supposed to be prescribed at the
boundary nedes and discrete forces at the internal ones. A system of discrete external forces
acting at the internal nodes is denoted by f'* and the space of such systems by $'°. The strain
field which such prescribed displacements and forces introduce in the elements is denoted by
e'® € €'*. Index p refers to the patch and is used for distinguishing the fields or spaces defined on
the domain {}* C () occupied by the patch from those defined on the whole domain ().

Theorem 8.1: “If the strains associated with e'® are of the order of ¢, then, the norm of f'° is
of the order of £°”.

Let us consider indeed a magnification of the patch with diameter L, i.e. obtained from the
original patch by dividing each distance by the scale factor

p= @.1)

S~

The modulus of elasticity E of the magnified patch is assumed to have the same value as the
modutus of elasticity of the original patch. Both, E and L, are assumed bounded, together with
their inverses.

If the displacements and strains of the magnified patch are bounded, the discrete forces acting
at the nodes of the patch must be bounded because E is also bounded.

Let us revert now to the initial size of the patch by multiplying by u every magnitude with the
dimensions of a length. The forces are multiplied simultaneously by p* (order of ¢°) in order that
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the modulus of elasticity ((FJ{L]™) keeps its value.t The displacements ([L]) become then of the
order of £ and the strains ([L}J[L]™") maintain their values.

Keeping the values of the distances and of the modulus of elasticity, the forces vary
proportionally to the displacements and strains, so that, if the displacements and strains are now
multiplied by g, becoming respectively of the order of £* and ¢, the forces are also multiplied by
u and become indeed of the order of #°.

Theorem 8.2: “If ||f"*[|s» is of the order of ¢* whenever ¢'"-image of any field with uniform
strains, then it will be of the same order if ¢'” is the Iy»-image of any field e” such that the first
derivatives of the strains are bounded”.

Indeed, if such derivatives are bounded, the strains associated to ¢ can be expressed by
e=Py+0(£) 8.2)

where P, denotes a constant term. As ||[f'7lls~ is assumed of the order of ¢ for such constant
term, and was proved (Theorem 8.1) to be of the same order for the terms of the order of ¢, the
theorem is proved.

The patch test consists in imposing to the nodes on the boundary of the patch discrete
displacements equal to the values at such nodes of arbitrary linear continuous displacement
fields, and in checking if the displacements at the internal nodes, assumed free from external
discrete forces, are also equal to the corresponding nodal values of the same fields.

In other words, the patch test consists in checking if the norm of the discrete force vector
which equilibrates the I"-image of any uniform strain field on Q7 is equal to zero.

Theorem 8.2 can take thus the following form.

Theorem 8.3: *“If the patch passes the patch test, [f’ *|ls-» is of the order of £° whenever ¢'? is the
Ier-image of a field e® such that the first derivatives of the strains are bounded”.

The next Theorem concerns the body as a whole.

Theorem 8.4: “If any patch in the body passes the patch test, then, the norm of the discrete
force system f* which equilibrates the Iz-image of any strain field with bounded first derivatives is
bounded”.

This theorem can easily be demonstrated if the body is decomposed into patches with
diameter ¢. As {|f'lls- is of the order of ¢° for each of such patches and

Ik = 17" 63

there follows that [|f'[|s is bounded.

Theorems 7.2 and 8.4 put together permit to conclude that, if any patch in the body passes the
patch test, and the strains associated with the exact solution have bounded first order derivatives
on {, the fulfillment of condition (a) of Theorem 5.3 implies the fulfillment of condition (b), i.e. of
the supplementary condition. This means that passing the patch test has the same effect as
keeping conformity, under the point of view of convergence and accuracy.

The adaptation of this reasoning to plane elasticity is simple. The adaption to plates offers some
difficulty however because the deformation of a plate depends on two constants with different
dimensions: the flexural rigidity D = (Et*/12(1 - »%)) and the transverse shear rigidity Gt, with
dimensions respectively (D] = [F1[L] and [Gt]=[F][L]™". It is clear that if the value of D is
kept constant during the magnification, the value of Gt will vary and vice-versa.

Assuming however that the magnitudes with the dimensions of a force keep their value, the
flexural rigidity and the tranverse shear rigidity become, in the magnified patch, equal to Do(€]L)

+No precaution has to be taken for keeping the value of the Poisson's coeflicient because this constant is dimensionless.
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and (Gt)o(L /¢), where D, and (Gt), denote the flexural rigitity and the transverse shear rigidity
of the initial patch. Assuming Kirchhoff’s assumption to hold in the initial patch, (Gt), being of
the order of ¢, and supposing that D, does not vanish, the magnified patch presents an
unbounded flexural rigidity and a bounded non-vanishing (Gt), so that bounded discrete
displacements correspond still to bounded discrete forces and vice-versa.

As the forces keep their values, bounded discrete forces and nodal moments of the order of ¢
correspond to displacements of the order of ¢ and bounded rotations in the initial patch. Forces
and moments respectively of the order of #* and ¢€° correspond to displacements and rotations
respectively of the order of #* and ¢2, and to curvatures of the order of ¢. Then, as the patch test
consists now in applying to the nodes on the boundary of the patch discrete displacements
corresponding to arbitrary quadratic displacement fields, Theorem 8.4 is still true.

9. CONCLUSIONS

‘The basic result of the present paper is inequality (5.16) which gives the expression for an
upper bound of the discretization error associated with the use of hybrid structural elements.

Such expression may be used in an almost direct way if certain strain and displacement
derivatives associated with the approximate solution can be predicted to remain bounded within
the elements as the size of such elements becomes smaller and smaller. This has been done for
different kinds of nonconforming elements whose ability for convergence could thus easily be
established.

The difficulty in predicting the boundedness of such derivatives makes it necessary however
to resort to special devices like the patch test.

It can be said in brief that convergence will be obtained if the completeness conditions are
fulfilled and the patch test is passed. It was shown however in Section 5 that passing the patch
test is not a necessary condition for convergence.

It was also proved in the paper that passing the (simple) patch test and satisfying
completeness conditions of a certain order are sufficient condition for the error being of an order
which depends on the order of the completeness conditions, so that the use of a higher-order
patch test does not seem necessary for accuracy analyses.

Such conclusion cannot be surprising if it is remarked that, in the conforming case, the order
of the error also depends exclusively on the order of the completeness condition, and not on the
satisfaction of a higher-order compatibility condition associated with the continuity of some
displacement derivatives across the element boundaries.

The author understands however that, although the order of the error is a limit concept to
which the actual magnitude of the error is expected to be connected in the real cases in which the
elements are indeed finite, it must not be confounded with such magnitude itself, so that the
questions of the conditions in which and of the extent to which passing a higher-order patch test
or satisfying a higher-order compatibility condition contribute for decreasing the error remain
open and certainly deserve to be investigated.
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